Lung injury-dependent oxidative status and chymotrypsin-like activity of skeletal muscles in hamsters with experimental emphysema

نویسندگان

  • Jair Tonon
  • Alessandra Lourenço Cecchini
  • Cláudia Roberta Brunnquell
  • Sara Santos Bernardes
  • Rubens Cecchini
  • Flávia Alessandra Guarnier
چکیده

BACKGROUND Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD). Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner. METHODS We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20) and 40 mg/mL (E40) papain. RESULTS The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p < 0.05) and E40 (52.27 ± 4.7; crossed the alveolar intercepts) groups. As compared to the control group, there was a reduction on body (171.6 ± 15.9 g) and muscle weight (251.87 ± 24.87 mg) in the E20 group (157.5 ± 10.3 mg and 230.12 ± 23.52 mg, for body and muscle weight, respectively), which was accentuated in the E40 group (137.4 ± 7.2 g and 197.87 ± 10.49 mg, for body and muscle weight, respectively). Additionally, the thiobarbituric acid reactive substances (TBARS), tert-butyl hydroperoxide-initiated chemiluminescence (CL), carbonylated proteins, and chymotrypsin-like proteolytic activity were elevated in the E40 group as compared to the E20 group (p < 0.05 for all comparisons). The severity of emphysema significantly correlated with the progressive increase in CL (r = -0.95), TBARS (r = -0.98), carbonyl proteins (r = -0.99), and chymotrypsin-like proteolytic activity (r = -0.90). Furthermore, augmentation of proteolytic activity correlated significantly with CL (r = 0.97), TBARS (r = 0.96), and carbonyl proteins (r = 0.91). CONCLUSIONS Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin-like activity, with possible involvement of oxidative stress in a severity-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulmonary emphysema decreases hamster skeletal muscle oxidative enzyme capacity.

Skeletal muscle oxidative enzyme capacity is impaired in patients suffering from emphysema and chronic obstructive pulmonary disease. This effect may result as a consequence of the physiological derangements because of the emphysema condition or, alternatively, as a consequence of the reduced physical activity level in these patients. To explore this issue, citrate synthase (CS) activity was me...

متن کامل

Differential effects of emphysema on skeletal muscle fibre atrophy in hamsters.

Patients afflicted with emphysema demonstrate altered peripheral skeletal muscle fibre composition and atrophy. It is unknown whether these alterations are general to all skeletal muscles independent of function, phenotype or oxidative capacity. Therefore, the purpose of this investigation was to determine whether emphysema induces alterations in muscle fibre composition or atrophy in respirato...

متن کامل

Does gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury?

Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant ...

متن کامل

Effects of emphysema and training on glutathione oxidation in the hamster diaphragm.

Loading of skeletal muscles is associated with increased generation of oxidants, which in turn may impair muscle contractility. We investigated whether the load on the hamster diaphragm imposed by pulmonary emphysema induces oxidative stress, as indicated by glutathione oxidation, and whether the degree of glutathione oxidation is correlated with contractility of the diaphragm. In addition, the...

متن کامل

Apoptosis and Id2 expression in diaphragm and soleus muscle from the emphysematous hamster.

During chronic obstructive pulmonary disease (COPD) diaphragm and peripheral muscle weakness occur. Muscle remodeling and wasting may be a result of apoptosis and changes in muscle-specific transcription factors, such as MyoD, altering muscle-specific gene transcription and muscle regenerative capacity. To investigate this, we instilled under ketamine/xylazine anesthesia porcine elastase in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013